Locating arrays with error correcting ability

 $\label{eq:MASAKAZU JIMBO} MASAKAZU JIMBO \\ \mbox{joint work with Xiao-Nan Lu}$

[†]Chubu University

[‡]Tokyo University of Science

Dedicated to Professor Helleseth's 70-th birthday MMC Workshop, September 7, 2017.

イロト イポト イラト イラト

- ▶ Applications F = {f₁, f₂,..., f_k} are installed in a PC.
- Each application has two states S={1, 2}.
- Some state of some application (f, σ), (σ ∈ S) or such a combination {(f_i, σ_i), (f_j, σ_j)} may cause a "fault" in PC
- A pair (f, σ) is called a 1-way interaction. A combination of pairs {(f_i, σ_i), (f_j, σ_j)} is called a 2-way interaction.
- We want to find such faulty interactions by designing a testing array of testing suits.

・ロト ・聞ト ・ヨト ・ヨト

- ▶ Applications F = {f₁, f₂,..., f_k} are installed in a PC.
- Each application has two states S={1, 2}.
- Some state of some application (f, σ) , $(\sigma \in S)$ or such a combination $\{(f_i, \sigma_i), (f_j, \sigma_j)\}$ may cause a "fault" in PC.
- A pair (f, σ) is called a 1-way interaction. A combination of pairs {(f_i, σ_i), (f_j, σ_j)} is called a 2-way interaction.
- We want to find such faulty interactions by designing a testing array of testing suits.

イロト 不得 トイヨト イヨト

- ▶ Applications F = {f₁, f₂,..., f_k} are installed in a PC.
- Each application has two states $S = \{1, 2\}$.
- Some state of some application (f, σ) , $(\sigma \in S)$ or such a combination $\{(f_i, \sigma_i), (f_j, \sigma_j)\}$ may cause a "fault" in PC.
- A pair (f, σ) is called a 1-way interaction. A combination of pairs {(f_i, σ_i), (f_j, σ_j)} is called a 2-way interaction.
- We want to find such faulty interactions by designing a testing array of testing suits.

- ▶ Applications F = {f₁, f₂,..., f_k} are installed in a PC.
- Each application has two states S={1, 2}.
- Some state of some application (f, σ) , $(\sigma \in S)$ or such a combination $\{(f_i, \sigma_i), (f_j, \sigma_j)\}$ may cause a "fault" in PC.
- A pair (f, σ) is called a 1-way interaction. A combination of pairs {(f_i, σ_i), (f_j, σ_j)} is called a 2-way interaction.
- We want to find such faulty interactions by designing a testing array of testing suits.

	f_1	f_2	•••	f_k
t_1	1	2	•••	1
t_2	2	2	•••	2
÷	÷	÷	·	÷
t _N	2	1		2

・ロト ・ 一下・ ・ ヨト ・ ヨト

Interaction testing: Terminologies

- Let $F = \{f_1, f_2, \dots, f_k\}$ be the set of k factors.
- For each $f \in F$, let $S = \{1, 2, ..., s\}$ be the set of possible levels or values.
- A *t*-way interaction is a choice of a set K of t factors, and a selection of a value σ_f ∈ S for each factor f ∈ K.

$$T = \{(f, \sigma_f) \mid f \in K\}$$
 with $K \in \binom{F}{t}, \sigma_f \in S$

- A test is a k-tuple indexed by the factors, and the coordinate indexed by f has an entry in S.
- A **test suit** is a collection of tests.
- ► It is natural to use an N × k array A = (a_{rf}) to present a test suit consisting of N tests and k factors.

Interaction testing: Problems

Assumptions:

- Each test gives a result 0 (pass) or 1 (fail).
- Failures are caused by an *i*-way interaction with $i \leq t$.

Problem:

- Is there an *i*-way interaction causing faults?
- Which are they?
- ▶ Given k and t, how many tests (N) are required?

Combinatorial testing arrays:

- Covering arrays
- Locating arrays
- Detecting arrays

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Interaction testing arrays and a *t*-locating array

- Suppose $A = (a_{rf})$ is an $N \times k$ testing array.
- let K be a t-subset of the column indices of A.
- ► A *t*-way interaction $T = \{(f, \sigma_f) | f \in K\}$ appears in the *r*-th row \Leftrightarrow $a_{rf} = \sigma_f$ for each $f \in K$.
- ρ_A(T) consists of the rows indices r of A in which the t-way interaction T
 appears, namely

$$\rho_A(T) = \{r \mid a_{rf} = \sigma_f \text{ for each } f \in K\}.$$

How can we find faults?

- Let T be the set of *i*-way interactions for *i* ≤ *t*. And assume that there is only one *i*-way interaction which causes failure in T.
- An array A can detect any single failure in T iff ρ_A(T)'s are distinct for all T in T.
- Such an array A is called a \overline{t} -locating array.

(日) (四) (日) (日) (日)

Interaction testing arrays and a *t*-locating array

- Suppose $A = (a_{rf})$ is an $N \times k$ testing array.
- let K be a t-subset of the column indices of A.
- ► A *t*-way interaction $T = \{(f, \sigma_f) | f \in K\}$ appears in the *r*-th row \Leftrightarrow $a_{rf} = \sigma_f$ for each $f \in K$.
- ρ_A(T) consists of the rows indices r of A in which the t-way interaction T
 appears, namely

$$\rho_A(T) = \{r \mid a_{rf} = \sigma_f \text{ for each } f \in K\}.$$

How can we find faults?

- Let T be the set of *i*-way interactions for *i* ≤ t. And assume that there is only one *i*-way interaction which causes failure in T.
- An array A can detect any single failure in T iff ρ_A(T)'s are distinct for all T in T.
- Such an array A is called a \overline{t} -locating array.

Example: Non 1-locating array

An *s*-ary testing array with N = 6, k = 9 and s = 3 levels for each factor.

	f_1	f_2	f ₃	f ₄	f_5	f_6	f ₇	f ₈	f9	outcome
t_1	1	3	3	3	2	2	1	3	2	1
t_2	2	1	3	3	3	2	2	1	1	1
t ₃	2	2	1	3	3	3	1	2	3	0
t ₄	3	2	2	1	3	3	3	1	3	0
t_5	3	3	2	2	1	3	2	3	1	0
t ₆	3	3	3	2	2	1	3	2	2	0

- ▶ Assume there is at most **one** 1-way interaction causing faults.
- Outcome says that t₁, t₂ have the same value σ and t₃, t₄, t₅, t₆ are different from σ.
- Such a 1-way interaction is $(f_6, 2)$.
- $\{t_1, t_2\} = \rho((f_6, 2)).$

(ロ) (部) (E) (E) (E)

Example: Non 1-locating array

An *s*-ary testing array with N = 6, k = 9 and s = 3 levels for each factor.

	f_1	f_2	f_3	f ₄	f_5	f_6	f ₇	f ₈	f9	outcome
t_1	1	3	3	3	2	2	1	3	2	0
t_2	2	1	3	3	3	2	2	1	1	0
t ₃	2	2	1	3	3	3	1	2	3	1
t ₄	3	2	2	1	3	3	3	1	3	1
t_5	3	3	2	2	1	3	2	3	1	0
t ₆	3	3	3	2	2	1	3	2	2	0

- ▶ Assume there is at most **one** 1-way interaction causing faults.
- Outcome says that t₃, t₄ have the same value σ and t₁, t₂, t₅, t₆ are different from σ.
- Such a 1-way interactions are $(f_2, 2)$ or $(f_9, 3)$. Which is faulty?

•
$$\{t_3, t_4\} = \rho((f_2, 2)) = \rho((f_9, 3)).$$

イロト 不得 とくほと くほと

Example: A locating array with strength 1

An *s*-ary testing array with N = 6, k = 9 and s = 3 levels for each factor.

	f_1	f_2	f_3	f ₄	f_5	f_6	f ₇	f ₈	f9	outcome
t_1	1	3	3	3	2	2	1	3	2	0
t_2	2	1	3	3	3	2	2	1	3	0
t ₃	2	2	1	3	3	3	1	2	1	1
t ₄	3	2	2	1	3	3	3	1	2	1
t_5	3	3	2	2	1	3	2	3	1	0
t ₆	3	3	3	2	2	1	3	2	3	0

- ▶ Assume there is at most **one** 1-way interaction causing faults.
- Outcome says that t₃, t₄ have the same value σ and t₁, t₂, t₅, t₆ are different from σ.
- ▶ (*f*₂, 2) is faulty.
- For any distinct $T = (f, \sigma)$ and $T' = (f', \sigma')$, $\rho(T) \neq \rho(T')$.

How can we check the locating array property?

All supports for 1, 2, 3 are distinct.

43	A 3-ary locating array with												
$k = 1, \ N = 6, \ k = 9, \ { m and} \ s = 3.$													
		f_1	f2	f_3	f_4	f_5	f_6	f7	f ₈	f			
	t ₁	1	3	3	3	2	2	1	3	2			
	t_2	2	1	3	3	3	2	2	1	3			
	t ₃	2	2	1	3	3	3	1	2	1			
	t ₄	3	2	2	1	3	3	3	1	2			
	t_5	3	3	2	2	1	3	2	3	1			
	t ₆	3	3	3	2	2	1	3	2	3			

For any distinct $T = (f, \sigma)$ and $T' = (f', \sigma'), \rho(T) \neq \rho(T').$

	1	2	3
f_1	$\{1\}$	$\{2,3\}$	$\{4,5,6\}$
f_2	{2}	$\{3,4\}$	$\{1, 5, 6\}$
f ₃	{3 }	$\{4,5\}$	$\{1, 2, 6\}$
f ₄	{4}	$\{5,6\}$	$\{1, 2, 3\}$
f ₅	{5}	$\{1,6\}$	$\{2,3,4\}$
f ₆	{6}	$\{1,2\}$	$\{3,4,5\}$
f ₇	$\{1,3\}$	$\{2,5\}$	$\{4,6\}$
f ₈	$\{2,4\}$	$\{3,6\}$	$\{1,5\}$
f9	$\{3, 5\}$	$\{1, 4\}$	$\{2, 6\}$

The above is regarded as **a spread system** with 9 spreads on 6 points witl

- イロト イボト イモト イモト - モ

Sept. 7 8 / 23

How can we check the locating array property?

All supports for 1, 2, 3 are distinct.

A 3-ary locating array with													
$k = 1, \ N = 6, \ k = 9, \ \text{and} \ s = 3.$													
	f.	fa	fa	f,	fr	fc	f-	fo	fo				
t1	1	3	3	3	2	2	1	3	2				
t_2	2 2	1	3	3	3	2	2	1	3				
t	3 2	2	1	3	3	3	1	2	1				
tz	, З	2	2	1	3	3	3	1	2				
ts	; 3	3	2	2	1	3	2	3	1				
te	; 3	3	3	2	2	1	3	2	3				

For any distinct $T = (f, \sigma)$ and $T' = (f', \sigma'), \rho(T) \neq \rho(T').$

	1	2	3
f_1	$\{1\}$	$\{2,3\}$	$\{4,5,6\}$
f_2	{2}	$\{3,4\}$	$\{1,5,6\}$
f ₃	{3}	$\{4,5\}$	$\{1, 2, 6\}$
f ₄	{4}	$\{5,6\}$	$\{1,2,3\}$
<i>f</i> ₅	{5}	$\{1,6\}$	$\{2,3,4\}$
f ₆	{6}	$\{1,2\}$	$\{3,4,5\}$
f ₇	$\{1,3\}$	$\{2,5\}$	$\{4,6\}$
f ₈	$\{2,4\}$	$\{3,6\}$	$\{1,5\}$
f9	{3,5}	$\{1, 4\}$	{2,6}

The above is regarded as **a spread system** with 9 spreads on 6 points with

・ロト ・聞ト ・ヨト ・ヨト

3 parts

Sept. 7 8 / 23

A binary locating array of strength $\overline{t} = 2(t \le 2)$

A binary \overline{t} -locating array with N = 11, k = 6.

Г	f_0	f_1	f_2	f3	f_4	f_5	
t ₀	1	1	2	1	1	1	
t_1	2	1	1	2	1	1	
t_2	1	2	1	1	2	1	
t ₃	2	1	2	1	1	2	
t ₄	2	2	1	2	1	1	
t_5	2	2	2	1	2	1	
t ₆	1	2	2	2	1	2	
t7	1	1	2	2	2	1	
t ₈	1	1	1	2	2	2	
t ₉	2	1	1	1	2	2	
$\lfloor t_{10} \rfloor$	1	2	1	1	1	2	

For any distinct 2-way interactions $T = \{(f_1, \sigma_1), (f_2, \sigma_2)\}, \rho(T)$ are distinct.

	(1, 1)	(1, 2)	(2, 1)	(2, 2)
(f_0, f_1)	$\{0, 7, 8\}$	$\{2, 6, 10\}$	$\{1,3,9\}$	$\{4,5\}$
(f_0, f_2)	$\{2, 8, 10\}$	$\{0,6,7\}$	$\{1,4,9\}$	$\{3,5\}$
(f_0, f_3)	$\{0, 2, 10\}$	$\{6, 7, 8\}$	$\{3, 5, 9\}$	$\{1,4\}$
(f_0, f_4)	$\{0, 6, 10\}$	$\{2, 7, 8\}$	$\{1,3,4\}$	$\{5,9\}$
(f_0, f_5)	$\{0, 2, 7\}$	$\{6, 8, 10\}$	$\{1,4,5\}$	$\{3,9\}$
(f_1, f_2)	$\{1, 8, 9\}$	$\{0,3,7\}$	$\{2,4,10\}$	$\{5,6\}$
(f_1, f_3)	$\{0,3,9\}$	$\{1, 7, 8\}$	$\{2, 5, 10\}$	$\{4,6\}$
(f_1, f_4)	$\{0,1,3\}$	$\{7, 8, 9\}$	$\{4, 6, 10\}$	$\{2,5\}$
(f_1, f_5)	$\{0, 1, 7\}$	$\{3, 8, 9\}$	$\{2,4,5\}$	$\{6, 10\}$
(f_2, f_3)	$\{2, 9, 10\}$	$\{1, 4, 8\}$	$\{0,3,5\}$	$\{6,7\}$
(f_2, f_4)	$\{1, 4, 10\}$	$\{2,8,9\}$	$\{0,3,6\}$	$\{5,7\}$
(f_2, f_5)	$\{1,2,4\}$	$\{8, 9, 10\}$	$\{0, 5, 7\}$	$\{3,6\}$
(f_3, f_4)	$\{0, 3, 10\}$	$\{2,5,9\}$	$\{1, 4, 6\}$	$\{7, 8\}$
(f_3, f_5)	$\{0,2,5\}$	$\{3, 9, 10\}$	$\{1, 4, 7\}$	$\{6, 8\}$
(f_4, f_5)	$\{0,1,4\}$	$\{3, 6, 10\}$	$\{2, 5, 7\}$	$\{8, 9\}$

A binary locating array of strength $\overline{t} = 2(t \le 2)$

A binary \overline{t} -locating array with N = 11, k = 6.

-	f_0	f_1	f_2	f_3	f_4	f_5	
t_0	1	1	2	1	1	1	
t_1	2	1	1	2	1	1	
t_2	1	2	1	1	2	1	
t_3	2	1	2	1	1	2	
t_4	2	2	1	2	1	1	
t_5	2	2	2	1	2	1	
t ₆	1	2	2	2	1	2	
t7	1	1	2	2	2	1	
t_8	1	1	1	2	2	2	
t9	2	1	1	1	2	2	
t_{10}	1	2	1	1	1	2	

 $\begin{array}{ccccccc} 1 & 2 \\ f_0 & \{0,2,6,7,8,10\} & \{1,3,4,5,9\} \\ f_1 & \{0,1,3,7,8,9\} & \{2,4,5,6,10\} \\ f_2 & \{1,2,4,8,9,10\} & \{0,3,5,6,7\} \\ f_3 & \{0,2,3,5,9,10\} & \{1,4,6,7,8\} \\ f_4 & \{0,1,3,46,10\} & \{2,5,7,8,9\} \\ f_5 & \{0,1,2,4,5,7\} & \{3,6,8,9,10\} \end{array}$

(日) (同) (日) (日)

For any distinct 1, 2-way interactions, $\rho(T)$'s are distinct.

- Assumption: (1) Faults occur only in 1-way interactions and (2) at most one error may happen in the outcome vector.
- The outcome is {1,4}, which does not fit any supports of 1-way interactions.
- {1,2,4} is the nearest among all supports of 1-way interactions.
- ▶ Hence, we find T = (f₁, 1) is faulty 1-way interaction.
- Actually, the minimum distance of these supports are 3, Hence, all 1-way interactions can be detected even if there is at most one error in the outcome.

A locating array with strength 1

	f_1	f_2	f3	f_4	f_5	f ₆	f7	outcome	
t_1	1	2	2	2	1	2	1	1	
t_2	1	1	2	2	2	1	2	0	
t3	2	1	1	2	2	2	1	0	
t ₄	1	2	1	1	2	2	2	1	
t_5	2	1	2	1	1	2	2	0	
t ₆	2	2	1	2	1	1	2	0	
t7	2	2	2	1	2	1	1	0	
				-				2	
				-	L			2	
	f_1		$\{1,$	2,4]	ł	$\{3, 5, 6, 7\}$			
	f_2		{2,	3,5]	ł	$\{1, 4, 6, 7\}$			
	f_3		{3 ,	4,6]	ł	$\{1, 2, 5, 7\}$			
	f_4		{4,	5,7]	ł	$\{1, 2, 3, 6\}$			
	f5		$\{1,$	5,6]	ł	$\{2, 3, 4, 7\}$			
	<i>f</i> ₆		{2,	6,7]	ł	$\{1, 3, 4, 5\}$			
	f7		{1 ,	3,7]	ł	{	[2, 4,	5,6}	

(日) (四) (注) (注)

MASAKAZU JIMBO (Chubu Univ.)

- Assumption: (1) Faults occur only in 1-way interactions and (2) at most one error may happen in the outcome vector.
- The outcome is {1,4}, which does not fit any supports of 1-way interactions.
- {1,2,4} is the nearest among all supports of 1-way interactions.
- ▶ Hence, we find T = (f₁, 1) is faulty 1-way interaction.
- Actually, the minimum distance of these supports are 3, Hence, all 1-way interactions can be detected even if there is at most one error in the outcome

A locating array with strength 1

	f_1	f_2	f3	f_4	f_5	f ₆	f7	outcome	
t_1	1	2	2	2	1	2	1	1	
t ₂	1	1	2	2	2	1	2	0	
t3	2	1	1	2	2	2	1	0	
t ₄	1	2	1	1	2	2	2	1	
t_5	2	1	2	1	1	2	2	0	
t ₆	2	2	1	2	1	1	2	0	
t7	2	2	2	1	2	1	1	0	
				1	L			2	
	f_1		{1,	2,4]	ł	$\{3, 5, 6, 7\}$			
	f_2		{2,	3,5]	ł	$\{1, 4, 6, 7\}$			
	f_3		{ 3,	4,6]	ł	$\{1, 2, 5, 7\}$			
	f_4		{4,	5,7]	ł	$\{1, 2, 3, 6\}$			
	f_5		$\{1,$	5,6]	ł	$\{2, 3, 4, 7\}$			
	f_6		{2,	6,7]	ł	$\{1,3,4,5\}$			
	f7		$\{1,$	3,7]	ł	$\{2, 4, 5, 6\}$			

・ロト ・聞ト ・ヨト ・ヨト

MASAKAZU JIMBO (Chubu Univ.)

Sept. 7 10 / 23

- Assumption: (1) Faults occur only in 1-way interactions and (2) at most one error may happen in the outcome vector.
- The outcome is {1,4}, which does not fit any supports of 1-way interactions.
- {1,2,4} is the nearest among all supports of 1-way interactions.
- ► Hence, we find T = (f₁, 1) is faulty 1-way interaction.
- Actually, the minimum distance of these supports are 3, Hence, all 1-way interactions can be detected even if there is at most one error in the outcome.

A locating array with strength 1

	f_1	f_2	f3	f_4	f_5	f_6	f_7	outcome	
t_1	1	2	2	2	1	2	1	1	
t_2	1	1	2	2	2	1	2	0	
t3	2	1	1	2	2	2	1	0	
t4	1	2	1	1	2	2	2	1	
t5	2	1	2	1	1	2	2	0	
t ₆	2	2	1	2	1	1	2	0	
t7	2	2	2	1	2	1	1	0	
				1	L			2	
	f_1		$\{1,$	2,4]	ł	$\{3, 5, 6, 7\}$			
	f_2		{2,	3,5]	ł	$\{1, 4, 6, 7\}$			
	f_3		{3 ,	4,6]	ł	$\{1, 2, 5, 7\}$			
	f_4		{4,	5,7]	ł	$\{1, 2, 3, 6\}$			
	f_5		$\{1,$	5,6]	ł	$\{2, 3, 4, 7\}$			
	<i>f</i> ₆		{2,	6,7]	ł	$\{1,3,4,5\}$			
	f7		$\{1,$	3,7]	ł	$\{2, 4, 5, 6\}$			

< ロ > < 同 > < 回 > < 回 >

MASAKAZU JIMBO (Chubu Univ.)

Sept. 7 10 / 23

If a *t*-locating array tolerates *e* errors, namely, even if the outcome has at most *e* errors, the *t*-locating property still holds, then the array is called *e*-error correcting *t*-locating array or a (*t*, *e*)-locating array.

< ロト < 同ト < ヨト < ヨト

Known bound on *N* or *k* when e = 0

- For a (t̄, e)-locating array with s levels and k factors, let LAN_(t̄,e)(k, s) be the minimum number N of tests (rows).
- For a (t̄, e)-locating array with s levels and N tests, let LAk_(t̄,e)(N, s) be the maximum number k of factors (columns).

Problem 1

Given k, s, t and e, find the value of LAN_(t,e)(k, s). Or, given N, s, t and e, find the value of LAk_(t,e)(N, s).

▶ Not many has been known for such bounds even when *e* = 0.

・ロト ・聞ト ・ヨト ・ヨト

Known bound on *N* or *k* when e = 0

- For a (t̄, e)-locating array with s levels and k factors, let LAN_(t̄,e)(k, s) be the minimum number N of tests (rows).
- For a (t

 , e)-locating array with s levels and N tests, let LAk<sub>(t
 ,e)</sub>(N, s) be the maximum number k of factors (columns).

Problem 1

Given k, s, t and e, find the value of $LAN_{(t,e)}(k,s)$. Or, given N, s, t and e, find the value of $LAk_{(\tilde{t},e)}(N,s)$.

Not many has been known for such bounds even when e = 0.

Lower bounds on N for e = 0

Theorem 1 (Tang, Colbourn and Yin(2012))

• For $k \ge t \ge 2$ and $s \ge 2$,

$$\mathsf{LAN}_{(t,0)}(k,s) \geq \left\lceil rac{2\binom{k}{t}s^t}{1+\binom{k}{t}}
ight
ceil$$

• For $s \ge t \ge 2$,

$$\mathsf{LAN}_{(t,0)}(k,s) \ge \left[-\frac{3}{2} - \binom{k}{t} + \sqrt{\binom{k}{t}^2 + (3+6s^t)\binom{k}{t} + \frac{9}{4}}\right]$$

Theorem 2 (A simple bound)

$$\mathsf{LAN}_{(t,0)}(k,s) \ge \left\lceil \log_2 s\left(t + \log_s \binom{k}{t}\right) \right\rceil.$$

When k is large, the simple bound is much better than T-C-Y bounds.

MASAKAZU JIMBO (Chubu Univ.)

Locating arrays with error correcting ability

The bound below is an improvement of Tang-Colbourn-Yin's bounds.

Theorem 3 (An improved bound)

For any given k, s, N and t, we fix an integer $\tau > 1$ arbitirary. Then a lower bound for N satisfies

$$\sum_{\ell=1}^{ au-1} (au-\ell) inom{\mathsf{N}}{\ell} \geq inom{\mathsf{k}}{t} (au m{s}^t - m{\mathsf{N}}).$$

T-C-Y's bound can be derived by setting $\tau = 2, 3$.

Sept. 7 14 / 23

< ロ > < 同 > < 回 > < 回 >

A lower bounds on *N* with *e*-correcting ability

Theorem 4 (An improved bound)

For any given k, s, t, and e,

$$2^{N} \geq \left(\sum_{i=0}^{e} \binom{N}{i}\right) \binom{k}{t} s^{t}$$

holds. Especially, for e = 0, we have

$$N \ge \left\lceil \log_2 s\left(t + \log_s \binom{k}{t}\right) \right\rceil.$$

Even when e = 0, no construction attaining the bound is known.

◆ロ > ◆母 > ◆臣 > ◆臣 >

Upper bounds $\mathsf{LAk}_{(1,e)}(N,s)$ and an optimal binary (1,1)-locating array

▶ Let A(n, d) denote the maximum possible size of a binary code C of length n and Hamming distance d.

Proposition (Hamming bound and Johnson bound)

$$\mathsf{LAk}_{(t,e)}(N,s) \leq \frac{A(N,2e+1)}{s} \leq \frac{2^N}{s^t \sum_{\ell=0}^{e} \binom{N}{\ell}}$$

- ▶ For t = e = 1, recall that $LAk_{(1,1)}(N,2) \le \frac{2^N}{2(N+1)}$.
- ► A (1,1)-locating array generated from the [N = 2^m 1, 2^m m 1,3] Hamming code attains the above bound.

Theorem 5

$$\mathsf{LAk}_{(1,1)}(2^m - 1, 2) = 2^{2^m - m - 2}$$
 for any $m \ge 3$.

A construction of (t, e)-locating arrays with N = O(k) for $t \ge 2$

Some other optimal (1, e)-locating arrays can be derived from affine geometry.

- Now, we consider the case of t ≥ 2. As stated before no constructions with N ≤ O(k) are known.
- We will derive such construction by utilizing Payley type matrices.

・ロト ・聞ト ・ヨト ・ヨト

A construction of (t, e)-locating arrays with N = O(k) for $t \ge 2$

Some other optimal (1, e)-locating arrays can be derived from affine geometry.

- Now, we consider the case of $t \ge 2$. As stated before no constructions with $N \le O(k)$ are known.
- ▶ We will derive such construction by utilizing Payley type matrices.

A Paley type locating array

Exam	ple	6 (A	N Pal	ley r	natr	ix of	ord	ler 1	1)			
- 0 1 2 3 4 5 6 7 8 9 10	0 1 2 1 2 2 2 1 1 1 2 1	1 1 2 1 2 2 1 1 1 2	2 2 1 1 2 1 2 2 1 1 1 1	3 1 2 1 1 2 1 2 2 1 1 2 2 1	4 1 2 1 1 2 1 2 2 2 1	5 1 1 2 1 1 2 1 2 2 2	6 2 1 1 2 1 2 1 2 2	7 2 1 1 1 2 1 1 2 1 2 5 (N)	8 2 2 1 1 1 2 1 1 2 1 2 1 	9 1 2 2 1 1 1 2 1 1 2 1 1 2	10 2 1 2 2 1 1 1 2 1 1 1 2	2: square, 1: non-square or 0 in \mathbb{F}_{11}
(k =	(k = 11). Then the array is a binary 2-locating array.											

◆□▶ ◆圖▶ ◆注▶ ◆注▶

Paley type s-ary (t, e)-locating arrays

- Let \mathbb{F}_q be the finite fields of order q. (Consider an array with N = k = q.)
- Let χ_s be a primitive multiplicative character of order s on 𝔽_q and ζ_s be a primitive s-th root of 1 in ℂ.
- ► We define a $q \times q$ array $A = (a_{xy}) (x, y \in \mathbb{F}_q)$ by $a_{xy} = \begin{cases} 0 & \text{if } x = y, \\ i & \text{if } \chi_s(x - y) = \zeta_s^i \end{cases}$

Then the following can be shown by utilizing some number theoretic technique including Weil's theorem.

Theorem 7

For any given s, t and e, a $q \times q$ array A is an s-ary (t, e)-LA if q is large enough.

イロト 不得 トイヨト イヨト 二日

Examples of Paley type binary (t, e)-locating arrays

Theorem 8

Let $q \equiv 3 \pmod{4}$ be a prime power. Then, for s = 2,

- A is a binary (1, e)-LA with $e = \frac{q-7}{4}$ if $q \ge 7$.
- A is a binary (2, e)-LA with $e = \frac{3q 10\sqrt{q} 43}{16}$ if $q \ge 11$.
- A is a binary (3, e)-LA with $e = \frac{7q 114\sqrt{q} 215}{64}$ if q > 293.

Theorem 9

Let $q \equiv 1 \pmod{4}$ be a prime power. Then, for s = 2,

- A is a binary (1, e)-LA with $e = \frac{q-11}{4}$ if q > 11.
- A is a binary (2, e)-LA with $e = \frac{3q 10\sqrt{q} 91}{16}$ if q > 51.
- A is a binary (3, e)-LA with $e = \frac{7q 114\sqrt{q} 535}{64}$ if q > 370.

イロト 不得 トイヨト イヨト 二日

Remark to Paley type locating arrays and truncation of rows

- ► A Paley type matrix A can generate an s-ary (t, e)-locating array with N = k = q if q is sufficiently large.
- A Paley matrix is utilized to construct a Hadamard matrix and a Hadamard matrix is an orthogonal array of strength 2 (not strength t).
- Constructions of *t*-locating arrays with $N \le O(k)$ is not known for general *t* even if e = 0 except for our construction, which is N = k.
- ▶ But known lower bound $LAN_{(t,0)}(k, s)$ is $N \ge O(\log k)$. Our construction requires N = O(k). It is not known whether $N = O(\log k)$ can be attained, or not.
- ▶ We try to truncate rows from our Paley type locating array to reduce the number of tests without loosing the property of a *t*-locating array. (Here, we do not care the error correcting ability *e*.)

ヘロン 人間 とくほと 人ほとう

Remark to Paley type locating arrays and truncation of rows

- ► A Paley type matrix A can generate an s-ary (t, e)-locating array with N = k = q if q is sufficiently large.
- A Paley matrix is utilized to construct a Hadamard matrix and a Hadamard matrix is an orthogonal array of strength 2 (not strength t).
- ► Constructions of *t*-locating arrays with N ≤ O(k) is not known for general t even if e = 0 except for our construction, which is N = k.
- ▶ But known lower bound $LAN_{(t,0)}(k,s)$ is $N \ge O(\log k)$. Our construction requires N = O(k). It is not known whether $N = O(\log k)$ can be attained, or not.
- We try to truncate rows from our Paley type locating array to reduce the number of tests without loosing the property of a *t*-locating array. (Here, we do not care the error correcting ability *e*.)

Truncation of rows from Paley type locating arrays

More research are required for locating arrays!!!

MASAKAZU JIMBO (Chubu Univ.)

Locating arrays with error correcting ability

Sept. 7 22 / 23

・ロト ・ 同ト ・ ヨト ・

Takk.

Gratulere med dagen Professor Helleseths sin 70 Ärsdag!

MASAKAZU JIMBO (Chubu Univ.)

Locating arrays with error correcting ability

Sept. 7 23 / 23

- 4 同 ト - 4 三 ト - 4