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An example of interaction testing: Software testing

▶ Applications F = {f1, f2, . . . , fk} are installed

in a PC.

▶ Each application has two states S={1, 2}.
▶ Some state of some application (f , σ),

(σ ∈ S) or such a combination

{(fi , σi ), (fj , σj)} may cause a “fault” in PC.

▶ A pair (f , σ) is called a 1-way interaction. A

combination of pairs {(fi , σi ), (fj , σj)} is

called a 2-way interaction.

▶ We want to find such faulty interactions by

designing a testing array of testing suits.

f1 f2 · · · fk
t1 1 2 · · · 1

t2 2 2 · · · 2
...

...
...

. . .
...

tN 2 1 · · · 2
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Interaction testing: Terminologies

▶ Let F = {f1, f2, . . . , fk} be the set of k factors.

▶ For each f ∈ F , let S = {1, 2, . . . , s} be the set of possible levels or values.

▶ A t-way interaction is a choice of a set K of t factors, and a selection of a

value σf ∈ S for each factor f ∈ K .

T =
{
(f , σf ) | f ∈ K

}
with K ∈

(
F

t

)
, σf ∈ S

▶ A test is a k-tuple indexed by the factors, and the coordinate indexed by f

has an entry in S .

▶ A test suit is a collection of tests.

▶ It is natural to use an N × k array A = (arf ) to present a test suit consisting

of N tests and k factors.
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Interaction testing: Problems

Assumptions:

▶ Each test gives a result 0 (pass) or 1 (fail).

▶ Failures are caused by an i-way interaction with i ≤ t.

Problem:

▶ Is there an i-way interaction causing faults?

▶ Which are they?

▶ Given k and t, how many tests (N) are required?

Combinatorial testing arrays:

▶ Covering arrays

▶ Locating arrays

▶ Detecting arrays

Masakazu Jimbo (Chubu Univ.) Locating arrays with error correcting ability Sept. 7 4 / 23



















































































Interaction testing arrays and a t-locating array

▶ Suppose A = (arf ) is an N × k testing array.

▶ let K be a t-subset of the column indices of A.

▶ A t-way interaction T =
{
(f , σf ) | f ∈ K

}
appears in the r -th row ⇔

arf = σf for each f ∈ K .

▶ ρA(T ) consists of the rows indices r of A in which the t-way interaction T

appears, namely

ρA(T ) = {r | arf = σf for each f ∈ K}.

How can we find faults?
▶ Let T be the set of i-way interactions for i ≤ t. And assume that there is

only one i-way interaction which causes failure in T .

▶ An array A can detect any single failure in T iff ρA(T )’s are distinct for all T

in T .

▶ Such an array A is called a t̄-locating array.
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Example: Non 1-locating array

An s-ary testing array with N = 6, k = 9 and s = 3 levels for each factor.

f1 f2 f3 f4 f5 f6 f7 f8 f9
t1 1 3 3 3 2 2 1 3 2

t2 2 1 3 3 3 2 2 1 1

t3 2 2 1 3 3 3 1 2 3

t4 3 2 2 1 3 3 3 1 3

t5 3 3 2 2 1 3 2 3 1

t6 3 3 3 2 2 1 3 2 2

outcome

1

1

0

0

0

0

▶ Assume there is at most one 1-way interaction causing faults.

▶ Outcome says that t1, t2 have the same value σ and t3, t4, t5, t6 are different

from σ.

▶ Such a 1-way interaction is (f6, 2).

▶ {t1, t2} = ρ((f6, 2)).
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1

1

0

0

▶ Assume there is at most one 1-way interaction causing faults.

▶ Outcome says that t3, t4 have the same value σ and t1, t2, t5, t6 are different

from σ.

▶ Such a 1-way interactions are (f2, 2) or (f9, 3). Which is faulty?

▶ {t3, t4} = ρ((f2, 2)) = ρ((f9, 3)).
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Example: A locating array with strength 1

An s-ary testing array with N = 6, k = 9 and s = 3 levels for each factor.

f1 f2 f3 f4 f5 f6 f7 f8 f9
t1 1 3 3 3 2 2 1 3 2

t2 2 1 3 3 3 2 2 1 3

t3 2 2 1 3 3 3 1 2 1

t4 3 2 2 1 3 3 3 1 2

t5 3 3 2 2 1 3 2 3 1

t6 3 3 3 2 2 1 3 2 3

outcome

0

0

1

1

0

0

▶ Assume there is at most one 1-way interaction causing faults.

▶ Outcome says that t3, t4 have the same value σ and t1, t2, t5, t6 are different

from σ.

▶ (f2, 2) is faulty.

▶ For any distinct T = (f , σ) and T ′ = (f ′, σ′), ρ(T ) ̸= ρ(T ′).
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How can we check the locating array property?

A 3-ary locating array with

t = 1, N = 6, k = 9, and s = 3.

f1 f2 f3 f4 f5 f6 f7 f8 f9
t1 1 3 3 3 2 2 1 3 2
t2 2 1 3 3 3 2 2 1 3
t3 2 2 1 3 3 3 1 2 1
t4 3 2 2 1 3 3 3 1 2
t5 3 3 2 2 1 3 2 3 1
t6 3 3 3 2 2 1 3 2 3

For any distinct T = (f , σ) and

T ′ = (f ′, σ′), ρ(T ) ̸= ρ(T ′).

All supports for 1, 2, 3 are distinct.

1 2 3

f1 {1} {2, 3} {4, 5, 6}
f2 {2} {3, 4} {1, 5, 6}
f3 {3} {4, 5} {1, 2, 6}
f4 {4} {5, 6} {1, 2, 3}
f5 {5} {1, 6} {2, 3, 4}
f6 {6} {1, 2} {3, 4, 5}
f7 {1, 3} {2, 5} {4, 6}
f8 {2, 4} {3, 6} {1, 5}
f9 {3, 5} {1, 4} {2, 6}

The above is regarded as a spread

system with 9 spreads on 6 points with

3 parts
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A binary locating array of strength t̄ = 2(t ≤ 2)

A binary t̄-locating array with N = 11,
k = 6.



f0 f1 f2 f3 f4 f5
t0 1 1 2 1 1 1
t1 2 1 1 2 1 1
t2 1 2 1 1 2 1
t3 2 1 2 1 1 2
t4 2 2 1 2 1 1
t5 2 2 2 1 2 1
t6 1 2 2 2 1 2
t7 1 1 2 2 2 1
t8 1 1 1 2 2 2
t9 2 1 1 1 2 2
t10 1 2 1 1 1 2


For any distinct 2-way interactions

T = {(f1, σ1), (f2, σ2)}, ρ(T ) are

distinct.

(1, 1) (1, 2) (2, 1) (2, 2)

(f0, f1) {0, 7, 8} {2, 6, 10} {1, 3, 9} {4, 5}
(f0, f2) {2, 8, 10} {0, 6, 7} {1, 4, 9} {3, 5}
(f0, f3) {0, 2, 10} {6, 7, 8} {3, 5, 9} {1, 4}
(f0, f4) {0, 6, 10} {2, 7, 8} {1, 3, 4} {5, 9}
(f0, f5) {0, 2, 7} {6, 8, 10} {1, 4, 5} {3, 9}
(f1, f2) {1, 8, 9} {0, 3, 7} {2, 4, 10} {5, 6}
(f1, f3) {0, 3, 9} {1, 7, 8} {2, 5, 10} {4, 6}
(f1, f4) {0, 1, 3} {7, 8, 9} {4, 6, 10} {2, 5}
(f1, f5) {0, 1, 7} {3, 8, 9} {2, 4, 5} {6, 10}
(f2, f3) {2, 9, 10} {1, 4, 8} {0, 3, 5} {6, 7}
(f2, f4) {1, 4, 10} {2, 8, 9} {0, 3, 6} {5, 7}
(f2, f5) {1, 2, 4} {8, 9, 10} {0, 5, 7} {3, 6}
(f3, f4) {0, 3, 10} {2, 5, 9} {1, 4, 6} {7, 8}
(f3, f5) {0, 2, 5} {3, 9, 10} {1, 4, 7} {6, 8}
(f4, f5) {0, 1, 4} {3, 6, 10} {2, 5, 7} {8, 9}
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A binary locating array of strength t̄ = 2(t ≤ 2)

A binary t̄-locating array with N = 11,
k = 6.



f0 f1 f2 f3 f4 f5
t0 1 1 2 1 1 1
t1 2 1 1 2 1 1
t2 1 2 1 1 2 1
t3 2 1 2 1 1 2
t4 2 2 1 2 1 1
t5 2 2 2 1 2 1
t6 1 2 2 2 1 2
t7 1 1 2 2 2 1
t8 1 1 1 2 2 2
t9 2 1 1 1 2 2
t10 1 2 1 1 1 2


For any distinct 1, 2-way interactions,

ρ(T )’s are distinct.

1 2

f0 {0, 2, 6, 7, 8, 10} {1, 3, 4, 5, 9}
f1 {0, 1, 3, 7, 8, 9} {2, 4, 5, 6, 10}
f2 {1, 2, 4, 8, 9, 10} {0, 3, 5, 6, 7}
f3 {0, 2, 3, 5, 9, 10} {1, 4, 6, 7, 8}
f4 {0, 1, 3, 46, 10} {2, 5, 7, 8, 9}
f5 {0, 1, 2, 4, 5, 7} {3, 6, 8, 9, 10}
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If error-correction is taken in mind...

▶ Assumption: (1) Faults occur only

in 1-way interactions and (2) at

most one error may happen in the

outcome vector.

▶ The outcome is {1, 4}, which does

not fit any supports of 1-way

interactions.

▶ {1, 2, 4} is the nearest among all

supports of 1-way interactions.

▶ Hence, we find T = (f1, 1) is faulty

1-way interaction.

▶ Actually, the minimum distance of

these supports are 3, Hence, all

1-way interactions can be detected

even if there is at most one error in

the outcome.

▶ Such locating array is called a

1-error correcting locating array.

A locating array with strength 1

f1 f2 f3 f4 f5 f6 f7 outcome
t1 1 2 2 2 1 2 1 1
t2 1 1 2 2 2 1 2 0
t3 2 1 1 2 2 2 1 0
t4 1 2 1 1 2 2 2 1
t5 2 1 2 1 1 2 2 0
t6 2 2 1 2 1 1 2 0
t7 2 2 2 1 2 1 1 0

1 2

f1 {1, 2, 4} {3, 5, 6, 7}
f2 {2, 3, 5} {1, 4, 6, 7}
f3 {3, 4, 6} {1, 2, 5, 7}
f4 {4, 5, 7} {1, 2, 3, 6}
f5 {1, 5, 6} {2, 3, 4, 7}
f6 {2, 6, 7} {1, 3, 4, 5}
f7 {1, 3, 7} {2, 4, 5, 6}
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If error-correction is taken in mind...

▶ If a t-locating array tolerates e errors, namely, even if the outcome has at

most e errors, the t-locating property still holds, then the array is called

e-error correcting t-locating array or a (t, e)-locating array.
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Known bound on N or k when e = 0

▶ For a (t̄, e)-locating array with s levels and k factors, let LAN(t̄,e)(k, s) be

the minimum number N of tests (rows).

▶ For a (t̄, e)-locating array with s levels and N tests, let LAk(t̄,e)(N, s) be the

maximum number k of factors (columns).

Problem 1

Given k , s, t and e, find the value of LAN(t,e)(k , s). Or, given N, s, t and e, find

the value of LAk(t̄,e)(N, s).

▶ Not many has been known for such bounds even when e = 0.
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Lower bounds on N for e = 0

Theorem 1 (Tang, Colbourn and Yin(2012))

▶ For k ≥ t ≥ 2 and s ≥ 2,

LAN(t,0)(k , s) ≥

⌈
2
(
k
t

)
st

1 +
(
k
t

)⌉ .
▶ For s ≥ t ≥ 2,

LAN(t,0)(k, s) ≥

−3

2
−
(
k

t

)
+

√(
k

t

)2

+ (3 + 6st)

(
k

t

)
+

9

4

 .

Theorem 2 (A simple bound)

LAN(t,0)(k , s) ≥
⌈
log2 s

(
t + logs

(
k

t

))⌉
.

When k is large, the simple bound is much better than T-C-Y bounds.
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An improvement of the lower bounds on N

The bound below is an improvement of Tang-Colbourn-Yin’s bounds.

Theorem 3 (An improved bound)

For any given k, s, N and t, we fix an integer τ > 1 arbitirary. Then a lower

bound for N satisfies

τ−1∑
ℓ=1

(τ − ℓ)

(
N

ℓ

)
≥
(
k

t

)
(τst − N).

T-C-Y’s bound can be derived by setting τ = 2, 3.
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A　 lower bounds on N with e-correcting ability

Theorem 4 (An improved bound)

For any given k, s, t，and e,

2N ≥

(
e∑

i=0

(
N

i

))(
k

t

)
st

holds. Especially, for e = 0, we have

N ≥
⌈
log2 s

(
t + logs

(
k

t

))⌉
.

Even when e = 0, no construction attaininng the bound is known.
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Upper bounds LAk(1,e)(N , s) and an optimal binary
(1, 1)-locating array

▶ Let A(n, d) denote the maximum possible size of a binary code C of length n

and Hamming distance d .

Proposition (Hamming bound and Johnson bound)

▶

LAk(t,e)(N, s) ≤ A(N, 2e + 1)

s
≤ 2N

st
∑e

ℓ=0

(
N
ℓ

) .
▶ For t = e = 1, recall that LAk(1,1)(N, 2) ≤ 2N

2(N+1) .

▶ A (1, 1)-locating array generated from the [N = 2m − 1, 2m −m − 1, 3]

Hamming code attains the above bound.

Theorem 5

LAk(1,1)(2
m − 1, 2) = 22

m−m−2 for any m ≥ 3.
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A construction of (t, e)-locating arrays with N = O(k) for t ≥ 2

▶ Some other optimal (1, e)-locating arrays can be derived from affine

geometry.

▶ Now, we consider the case of t ≥ 2. As stated before no constructions with

N ≤ O(k) are known.

▶ We will derive such construction by utilizing Payley type matrices.
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A Paley type locating array

Example 6 (A Paley matrix of order 11)

− 0 1 2 3 4 5 6 7 8 9 10

0 1 1 2 1 1 1 2 2 2 1 2

1 2 1 1 2 1 1 1 2 2 2 1

2 1 2 1 1 2 1 1 1 2 2 2

3 2 1 2 1 1 2 1 1 1 2 2

4 2 2 1 2 1 1 2 1 1 1 2

5 2 2 2 1 2 1 1 2 1 1 1

6 1 2 2 2 1 2 1 1 2 1 1

7 1 1 2 2 2 1 2 1 1 2 1

8 1 1 1 2 2 2 1 2 1 1 2

9 2 1 1 1 2 2 2 1 2 1 1

10 1 2 1 1 1 2 2 2 1 2 1

2: square,

1: non-square or 0

in F11

We correspond each row to a test (N = 11) and each column to a factor

(k = 11). Then the array is a binary 2-locating array.
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Paley type s-ary (t, e)-locating arrays

▶ Let Fq be the finite fields of order q. (Consider an array with N = k = q.)

▶ Let χs be a primitive multiplicative character of order s on Fq and ζs be a

primitive s-th root of 1 in C.
▶ We define a q × q array A = (axy ) (x , y ∈ Fq) by

axy =

{
0 if x = y ,

i if χs(x − y) = ζ is

Then the following can be shown by utilizing some number theoretic technique

including Weil’s theorem.

Theorem 7

For any given s, t and e, a q × q array A is an s-ary (t, e)-LA if q is large enough.
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Examples of Paley type binary (t, e)-locating arrays

Theorem 8

Let q ≡ 3 (mod 4) be a prime power. Then, for s = 2,

▶ A is a binary (1, e)-LA with e = q−7
4 if q ≥ 7.

▶ A is a binary (2, e)-LA with e =
3q−10

√
q−43

16 if q ≥ 11.

▶ A is a binary (3, e)-LA with e =
7q−114

√
q−215

64 if q > 293.

Theorem 9

Let q ≡ 1 (mod 4) be a prime power. Then, for s = 2,

▶ A is a binary (1, e)-LA with e = q−11
4 if q > 11.

▶ A is a binary (2, e)-LA with e =
3q−10

√
q−91

16 if q > 51.

▶ A is a binary (3, e)-LA with e =
7q−114

√
q−535

64 if q > 370.
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Remark to Paley type locating arrays and truncation of rows

▶ A Paley type matrix A can generate an s-ary (t, e)-locating array with

N = k = q if q is sufficiently large.

▶ A Paley matrix is utilized to construct a Hadamard matrix and a Hadamard

matrix is an orthogonal array of strength 2 (not strength t).

▶ Constructions of t-locating arrays with N ≤ O(k) is not known for general t

even if e = 0 except for our construction, which is N = k.

▶ But known lower bound LAN(t,0)(k , s) is N ≥ O(log k). Our construction

requires N = O(k). It is not known whether N = O(log k) can be attained,

or not.

▶ We try to truncate rows from our Paley type locating array to reduce the

number of tests without loosing the property of a t-locating array. (Here, we

do not care the error correcting ability e.)
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Truncation of rows from Paley type locating arrays
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More research are required for locating arrays!!!
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Takk.

Gratulere med dagen Professor
Helleseths sin 70 Ärsdag!
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