Locating arrays with error correcting ability

Masakazu Jimbo joint work with Xiao-Nan Lu

*†*Chubu University

*‡*Tokyo University of Science

Dedicated to Professor Helleseth's 70-th birthday MMC Workshop, September 7, 2017.

- ▶ Applications $F = \{f_1, f_2, \ldots, f_k\}$ are installed in a PC.
- ▶ Each application has two states S=*{*1, 2*}*.
-
-
-

- ▶ Applications $F = \{f_1, f_2, \ldots, f_k\}$ are installed in a PC.
- ▶ Each application has two states S=*{*1, 2*}*.
- \blacktriangleright Some state of some application (f, σ) , (*σ ∈ S*) or such a combination $\{(f_i, \sigma_i), (f_j, \sigma_j)\}$ may cause a "fault" in PC.
-
-

- ▶ Applications $F = \{f_1, f_2, \ldots, f_k\}$ are installed in a PC.
- ▶ Each application has two states S=*{*1, 2*}*.
- \blacktriangleright Some state of some application (f, σ) , (*σ ∈ S*) or such a combination $\{(f_i, \sigma_i), (f_j, \sigma_j)\}$ may cause a "fault" in PC.
- \blacktriangleright A pair (f, σ) is called a 1-way interaction. A $\{\textsf{(f}_i, \sigma_i), (\textsf{f}_j, \sigma_j)\}$ is called a 2-way interaction.
- ▶ We want to find such faulty interactions by designing a testing array of testing suits.

- ▶ Applications $F = \{f_1, f_2, \ldots, f_k\}$ are installed in a PC.
- ▶ Each application has two states S=*{*1, 2*}*.
- \blacktriangleright Some state of some application (f, σ) , (*σ ∈ S*) or such a combination $\{(f_i, \sigma_i), (f_j, \sigma_j)\}$ may cause a "fault" in PC.
- \blacktriangleright A pair (f, σ) is called a 1-way interaction. A $\{\textsf{(f}_i, \sigma_i), (\textsf{f}_j, \sigma_j)\}$ is called a 2-way interaction.
- ▶ We want to find such faulty interactions by designing a testing array of testing suits.

Interaction testing: Terminologies

- \blacktriangleright Let $F = \{f_1, f_2, \ldots, f_k\}$ be the set of *k* **factors**.
- ▶ For each *f ∈ F*, let *S* = *{*1*,* 2*, . . . ,s}* be the set of possible **levels** or **values**.
- ▶ A *t*-way interaction is a choice of a set *K* of *t* factors, and a selection of a value $\sigma_f \in S$ for each factor $f \in K$.

$$
\mathcal{T} = \big\{ (f, \sigma_f) \mid f \in K \big\} \text{ with } K \in {\binom{F}{t}}, \sigma_f \in S
$$

- ▶ A test is a *k*-tuple indexed by the factors, and the coordinate indexed by *f* has an entry in *S*.
- ▶ A **test suit** is a collection of tests.
- ▶ It is natural to use an $N \times k$ array $A = (a_{rf})$ to present a test suit consisting of *N* **tests** and *k* **factors**.

Interaction testing: Problems

Assumptions:

- \blacktriangleright Each test gives a result 0 (pass) or 1 (fail).
- ▶ Failures are caused by an *i*-way interaction with *i ≤ t*.

Problem:

- ▶ Is there an *i*-way interaction causing faults?
- ▶ Which are they?
- ▶ Given *k* and *t*, how many tests (*N*) are required?

Combinatorial testing arrays:

- ▶ Covering arrays
- ▶ Locating arrays
- ▶ Detecting arrays

Interaction testing arrays and a *t***-locating array**

- ▶ Suppose $A = (a_{rf})$ is an $N \times k$ testing array.
- ▶ let *K* be a *t*-subset of the column indices of *A*.
- $▶$ A *t*-way interaction $T = \{(f, \sigma_f) | f \in K\}$ appears in the *r*-th row \Leftrightarrow $a_{rf} = \sigma_f$ for each $f \in K$.
- $\rho_A(T)$ consists of the rows indices *r* of *A* in which the *t*-way interaction *T* appears, namely

 $\rho_A(T) = \{r \mid a_r f = \sigma_f \text{ for each } f \in K\}.$

-
-
-

Interaction testing arrays and a *t***-locating array**

- ▶ Suppose $A = (a_{rf})$ is an $N \times k$ testing array.
- ▶ let *K* be a *t*-subset of the column indices of *A*.
- $▶$ A *t*-way interaction $T = \{(f, \sigma_f) | f \in K\}$ appears in the *r*-th row \Leftrightarrow $a_{rf} = \sigma_f$ for each $f \in K$.
- $\rho_A(T)$ consists of the rows indices *r* of *A* in which the *t*-way interaction *T* appears, namely

$$
\rho_A(T) = \{r \mid a_{rf} = \sigma_f \text{ for each } f \in K\}.
$$

How can we find faults?

- ▶ Let *T* be the set of *i*-way interactions for *i ≤ t*. And assume that there is only one *i*-way interaction which causes failure in *T* .
- **►** An array *A* can detect any single failure in T iff $\rho_A(T)$'s are distinct for all T in $\mathcal T$.
- \triangleright Such an array *A* is called a \overline{t} -locating array.

Example: Non 1**-locating array**

An *s*-ary testing array with $N = 6$, $k = 9$ and $s = 3$ levels for each factor.

- ▶ Assume there is at most **one** 1-way interaction causing faults.
- ▶ Outcome says that t_1 , t_2 have the same value σ and t_3 , t_4 , t_5 , t_6 are different from *σ*.
- ▶ Such a 1-way interaction is $(f_6, 2)$.
- ▶ ${t_1, t_2} = \rho((f_6, 2)).$

Example: Non 1**-locating array**

An *s*-ary testing array with $N = 6$, $k = 9$ and $s = 3$ levels for each factor.

- ▶ Assume there is at most **one** 1-way interaction causing faults.
- ▶ Outcome says that t_3 , t_4 have the same value σ and t_1 , t_2 , t_5 , t_6 are different from *σ*.
- ▶ Such a 1-way interactions are $(f_2, 2)$ or $(f_9, 3)$. Which is faulty?
- ▶ ${t_3, t_4} = \rho((f_2, 2)) = \rho((f_9, 3)).$

Example: A locating array with strength 1

An *s*-ary testing array with $N = 6$, $k = 9$ and $s = 3$ levels for each factor.

- ▶ Assume there is at most **one** 1-way interaction causing faults.
- ▶ Outcome says that t_3 , t_4 have the same value σ and t_1 , t_2 , t_5 , t_6 are different from *σ*.
- \blacktriangleright $(f_2, 2)$ is faulty.
- ► For any distinct $T = (f, \sigma)$ and $T' = (f', \sigma'), \rho(T) \neq \rho(T').$

How can we check the locating array property?

1 2 3

*f*¹ *{*1*} {*2*,* 3*} {*4*,* 5*,* 6*} f*² *{*2*} {*3*,* 4*} {*1*,* 5*,* 6*} f*³ *{*3*} {*4*,* 5*} {*1*,* 2*,* 6*} f*⁴ *{*4*} {*5*,* 6*} {*1*,* 2*,* 3*} f*⁵ *{*5*} {*1*,* 6*} {*2*,* 3*,* 4*} f*⁶ *{*6*} {*1*,* 2*} {*3*,* 4*,* 5*} f*⁷ *{*1*,* 3*} {*2*,* 5*} {*4*,* 6*} f*⁸ *{*2*,* 4*} {*3*,* 6*} {*1*,* 5*}*

 $T' = (f', \sigma')$, $\rho(T) \neq \rho(T')$.

How can we check the locating array property?

 $T' = (f', \sigma')$, $\rho(T) \neq \rho(T')$.

The above is regarded as **a spread system** with 9 spreads on 6 points with

A binary locating array of strength $\bar{t} = 2(t \leq 2)$

A binary locating array of strength $\bar{t} = 2(t \leq 2)$

A binary \bar{t} -**locating array** with $N = 11$, $k = 6$.

For any distinct 1*,* 2-way interactions, *ρ*(*T*)'s are distinct.

-
-
-
-

 \mathcal{S} such a such as a such locating array is called array is called a such as a such as a such as a such as

A locating array with strength 1

▶ If a *t*-locating array tolerates *e* errors, namely, even if the outcome has **at most** *e* **errors**, the *t*-locating property still holds, then the array is called *e***-error correcting** *t***-locating array** or a (*t, e*)**-locating array**.

Known bound on N or k when $e = 0$

- ▶ For a (\bar{t}, e) -locating array with *s* levels and *k* factors, let $\text{LAN}_{(\bar{t}, e)}(k, s)$ be the minimum number *N* of tests (rows).
- ▶ For a (\bar{t}, e) -locating array with *s* levels and *N* tests, let LAk_{(\bar{t}, e)(N, s) be the} maximum number *k* of factors (columns).

Known bound on N or k when $e = 0$

- ▶ For a (\bar{t}, e) -locating array with *s* levels and *k* factors, let $\text{LAN}_{(\bar{t}, e)}(k, s)$ be the minimum number *N* of tests (rows).
- ▶ For a (\bar{t}, e) -locating array with *s* levels and *N* tests, let LAk_{(\bar{t}, e)(N, s) be the} maximum number *k* of factors (columns).

Problem 1

Given *k*, *s*, *t* and *e*, find the value of $\text{LAN}_{(t,e)}(k, s)$. Or, given *N*, *s*, *t* and *e*, find the value of $LAk_{(\bar{t},e)}(N,s)$.

 \blacktriangleright Not many has been known for such bounds even when $e = 0$.

Lower bounds on N **for** $e = 0$

Theorem 1 (Tang, Colbourn and Yin(2012))

▶ *For* $k \ge t \ge 2$ *and* $s \ge 2$ *,*

$$
\mathsf{LAN}_{(t,0)}(k,s) \geq \left\lceil \frac{2 {k \choose t} s^t}{1 + {k \choose t}} \right\rceil.
$$

▶ *For* $s \ge t \ge 2$ *,*

$$
\mathsf{LAN}_{(t,0)}(k,s) \geq \left[-\frac{3}{2} - {k \choose t} + \sqrt{{k \choose t}^2 + (3 + 6s^t){k \choose t} + \frac{9}{4}} \right].
$$

Theorem 2 (A simple bound)

$$
\mathsf{LAN}_{(t,0)}(k,s) \geq \left\lceil \log_2 s\left(t + \log_s {k \choose t}\right) \right\rceil.
$$

When *k* is large, the simple bound is much better than T_rC_r , bounds. Masakazu Jimbo **(Chubu Univ.) Locating arrays with error correcting ability Sept. 7 13 / 23**

An improvement of the lower bounds on *N*

The bound below is an improvement of Tang-Colbourn-Yin's bounds.

Theorem 3 (An improved bound)

For any given k, s, N and t, we fix an integer τ > 1 *arbitirary. Then a lower bound for N satisfies*

$$
\sum_{\ell=1}^{\tau-1}(\tau-\ell){\binom{N}{\ell}}\geq \binom{k}{t}(\tau s^t-N).
$$

T-C-Y's bound can be derived by setting $\tau = 2, 3$.

A lower bounds on *N* **with** *e***-correcting ability**

Theorem 4 (An improved bound)

For any given k, s, t,*and e,*

$$
2^N \ge \left(\sum_{i=0}^e \binom{N}{i}\right) \binom{k}{t} s^t
$$

holds. Especially, for e = 0, we have

$$
N \geq \left\lceil \log_2 s \left(t + \log_s \binom{k}{t} \right) \right\rceil.
$$

Even when $e = 0$, no construction attaininng the bound is known.

Upper bounds LAk(1*,e*)(*N,s*) **and an optimal binary** (1*,* 1)**-locating array**

 \blacktriangleright Let $A(n, d)$ denote the maximum possible size of a binary code C of length *n* and Hamming distance *d*.

Proposition (Hamming bound and Johnson bound)

$$
\color{red} \blacktriangleright
$$

 $\mathsf{LAK}_{(t,e)}(\mathsf{N},s) \leq \frac{\mathsf{A}(\mathsf{N},2e+1)}{2}$ $\frac{2e+1}{s} \leq \frac{2^N}{s^t \sum_{\ell=1}^e}$ $\frac{1}{s^t \sum_{\ell=0}^e {N \choose \ell}}$.

- ▶ For $t = e = 1$, recall that $LAk_{(1,1)}(N,2) \leq \frac{2^N}{2(N+1)}$.
- ▶ A (1*,* 1)-locating array generated from the [*N* = 2*^m −* 1*,* 2 *^m − m −* 1*,* 3] Hamming code attains the above bound.

Theorem 5 LAk_(1,1)(2^{*m*} − 1, 2) = 2^{2*^m*−*m*−2 *for any m* ≥ 3*.*} **Collaborating arrays with error correcting ability Sept. 7** 16 / 23

A construction of (t, e) -locating arrays with $N = O(k)$ for $t \ge 2$

- ▶ Some other optimal $(1, e)$ -locating arrays can be derived from affine geometry.
-
-

A construction of (t, e) -locating arrays with $N = O(k)$ for $t \ge 2$

- ▶ Some other optimal $(1, e)$ -locating arrays can be derived from affine geometry.
- ▶ Now, we consider the case of *t ≥* 2. As stated before no constructions with $N \leq O(k)$ are known.
- ▶ We will derive such construction by utilizing Payley type matrices.

A Paley type locating array

Paley type *s***-ary** (*t, e*)**-locating arrays**

- \blacktriangleright Let \mathbb{F}_q be the finite fields of order *q*. (Consider an array with $N = k = q$.)
- ▶ Let χ _{*s*} be a primitive multiplicative character of order *s* on \mathbb{F}_q and ζ _{*s*} be a primitive *s*-th root of 1 in C.
- ▶ We define a $q \times q$ array $A = (a_{xy}) (x, y \in \mathbb{F}_q)$ by $a_{xy} =$ $\int 0$ if $x = y$, *i* if χ _s $(x - y) = \zeta$ ^{*i*}_s

Then the following can be shown by utilizing some number theoretic technique including Weil's theorem.

Theorem 7 *For any given s, t and e, a q × q array A is an s-ary* (*t, e*)*-LA if q is large enough.*

Examples of Paley type binary (*t, e*)**-locating arrays**

Theorem 8

Let $q \equiv 3$ (mod 4) *be a prime power. Then, for* $s = 2$,

- ▶ *A* is a binary $(1, e)$ -*LA* with $e = \frac{q-7}{4}$ if $q \ge 7$ *.*
- ▶ *A* is a binary (2, e)-LA with $e = \frac{3q 10\sqrt{q} 43}{16}$ if $q \ge 11$ *.*
- ▶ *A is a binary* (3*, e*)*-LA with e* = ⁷*q−*114*√q−*²¹⁵ ⁶⁴ *if q >* 293*.*

Theorem 9

Let $q \equiv 1$ (mod 4) *be a prime power. Then, for* $s = 2$,

- ▶ *A* is a binary $(1, e)$ -LA with $e = \frac{q-11}{4}$ if $q > 11$.
- ▶ *A* is a binary (2, e)-LA with $e = \frac{3q 10\sqrt{q} 91}{16}$ if $q > 51$.
- ▶ *A is a binary* (3*, e*)*-LA with e* = ⁷*q−*114*√q−*⁵³⁵ ⁶⁴ *if q >* 370*.*

Remark to Paley type locating arrays and truncation of rows

- ▶ A Paley type matrix A can generate an *s*-ary (*t*, *e*)-locating array with $N = k = q$ if *q* is sufficiently large.
- ▶ A Paley matrix is utilized to construct a Hadamard matrix and a Hadamard matrix is an orthogonal array of strength 2 (not strength *t*).
-
-
-

Remark to Paley type locating arrays and truncation of rows

- ▶ A Paley type matrix A can generate an *s*-ary (*t*, *e*)-locating array with $N = k = q$ if *q* is sufficiently large.
- ▶ A Paley matrix is utilized to construct a Hadamard matrix and a Hadamard matrix is an orthogonal array of strength 2 (not strength *t*).
- ▶ Constructions of *t*-locating arrays with $N \leq O(k)$ is not known for general *t* even if $e = 0$ except for our construction, which is $N = k$.
- ▶ But known lower bound $LAN_{(t,0)}(k,s)$ is $N ≥ O(\log k)$. Our construction requires $N = O(k)$. It is not known whether $N = O(\log k)$ can be attained, or not.
- ▶ We try to truncate rows from our Paley type locating array to reduce the number of tests without loosing the property of a *t*-locating array. (Here, we do not care the error correcting ability *e*.)

More research are required for locating arrays!!!

Takk.

Gratulere med dagen Professor Helleseths sin 70 Arsdag!